Backtracking is a general algorithmic technique that considers searching every possible combination in order to solve an optimization problem. Backtracking is also known as depth-first search or branch and bound. By inserting more knowledge of the problem, the search tree can be pruned to avoid considering cases that don't look promising. While backtracking is useful for hard problems to which we do not know more efficient solutions, it is a poor solution for the everyday problems that other techniques are much better at solving.However, dynamic programming and greedy algorithms can be thought of as optimizations to backtracking, so the general technique behind backtracking is useful for understanding these more advanced concepts. Learning and understanding backtracking techniques first provides a good stepping stone to these more advanced techniques because you won't have to learn several new concepts all at once.
Backtracking Methodology
1. View picking a solution as a sequence of choices
2. For each choice, consider every option recursively
3. Return the best solution found
This methodology is generic enough that it can be applied to most problems. However, even when taking care to improve a backtracking algorithm, it will probably still take exponential time rather than polynomial time. Additionally, exact time analysis of backtracking algorithms can be extremely difficult: instead, simpler upperbounds that may not be tight are given.
0 comments:
Post a Comment
Your Suggestions and Reviews are valuable to us to make this blog better........